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ABSTRACT 

A mathematical filter for eliminating persistence in meteorological data is proposed and discussed. This filter 
takes the form Z t = X L - p I X 1 - - I .  Relationships between statistical parameters of the filtered and the original data 
are derived and found to depend only on the value of p 1 .  Examples of the effect of the filter on the power spectrum of 
various types of input data are also given. 

1, INTRODUCTION 
Long recognized is the fact that the analysis of me- 

teorological data often requires the use of statistical for- 
mulas under conditions other than those assumed in 
their derivations. The generally limited record lengths, 
lack of precision in the measurements, nonstationarity, 
and, above all, nonindependence (or persistence) in the 
data all cast doubt on the validity of the results. Of these 
factors, perhaps the most pernicious (because so often 
unrecognized) is persistence. 

A technique commonly used by communications en- 
gineers to enhance signal-to-noise ratios may be of benefit 
here. This is the filtering of the data to  remove power at 
unwanted frequencies. In its simplest form, this consists 
of subtracting the mean value from each individual data 
point. The power spectrum of the fluctuations about the 
mean is then compared with the power spectrum of white 
noise (a white noise spectrum is of uniform power at  all 
frequencies and results when the random fluctuations 
are completely independent). In dealing with meteoro- 
logical data, a further modification should be made to  
eliminate the effect of persistence on the power spectrum. 
Specifically, the filter suggested here is 

Zt=Xt- ( 1 )  

where 2, is the modified value, X g  and Xt-l are the original 
deviations from the mean at times t and t - 1 ,  and p1 is 
the autocorrelation coefficient between X ,  and X,-l. (See 
table 1.) The reasons for choosing this particular filter 
and its effect on the power spectrum are detailed in the 
following sections. 

TABLE 1.-Mathematical symbols used 

original data a t  time t=1,2, . . . , N 
original data, with the mean subtracted 
modified data after filtering of X I  
number of data points available 
maximum lag used 
autocorrelation coefficient of the XI’S at  lag TZ 

autocorrelation coefficient of the 21’s at lag TZ 

variance of the X,’S 

spectral distribution function of X 
spectral distribution function of 2 
general spectral distribution function 
spectral distribution function of red noise 

base of the natural logarithms 
indices to indicate lags 

VWimce Of the ZI’S 

9. MARKOV PROCESSES AND RED NOISE 
A simple Markov process is defined as one in which 

the value at  any time depends only on the value of the 
variable one time step before. If the X’s of eq (1) were 
the result of a simple Markov process and p1 were com- 
puted exactly, the 2’s would all be identically zero. The 
autocorrelation coefficient of a simple Markov process 
decreases exponentially with increasing lag. Thus, the 
autocorrelation coefficient at lag n equals ( P ~ ) ~ .  This can 
be demonstrated as follows. For a Markov process, 

where W is a random variable with zero mean. Assuming 
that the X’s have been expressed as deviations from a 
mean value, the autocorrelation coefficient a t  lag 1 is 

while that a t  lag 2 is 

Similar substitution for autocorrelations at higher lags 
yields the general result 

The power spectrum resulting from a Markov process 
has a peak at  low frequencies and has been dubbed the 

power spectrum of red noise,” analogous to that of 
white noise. It has been suggested (Gilman et  al. 1963, 
Mitchell 1964, Ackerman 1967) that those analyzing 
meteorological data should compare their observed spec- 
trum with that of red noise to determine the significance 
of any apparent periodicities. Comparing the spectra 
by eye is not entirely satisfactory; nor is successive fitting 
of various red noise spectra to the observations. Filter- 
ing the data by means of eq (1) and examining the spec- 
trum of the residuals gives more objective, reproducible 
results. 
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3. MATHEMATICAL DISCUSSION the autocorrelationlcoefficient a t  lag 1 as shown in e¶ (5 ) .  
Substituting this into eq(g) fields Calculation of autocorrelation coefficients and power 

(1Q)) P P  spectra on digital computers when the data have been 
sampled a t  discrete, equal time intervals is well docu- 

M -  1 
&=If2  p1Q cos ---+py cos p*. 

g=1 M 
mented (e.g., Southworth 1960). Assume a series of dis- 
crete data points Y 1  with mean equal P. As a first step in 
calculating the power spectrum, it is customary to form 
a new data set by subtracting the mean from each data 
point. Thus, 

x, = Y, - F, (6) 

Next, we make the transformation 

(11) cos !&E= 1/2(efPP+/M+e-fQPr/M). 
A4 

Substituting this into eq (IO), we obtain 
x=o, 

and - 
u:=x2. 

The second and third terms of this equation are the 
sums of geometric Progressions and can be evahated. 
Equation (12) then becomes 

It has been shown (e.g., Miller 1956, p. 171 ff.) that the 
power density function equals the Fourier transform of the 

ple-iPrlM 
+pye-fpr- 

autocorrelation coefficient (this equivalence is sometimes 
referred to as the Wiener-Khintchine Relation). The Lv= 1 + plefPz,M-l ple-ipu/M-l +p," cOsp' 

pyeefpu--plefPu/M 

(13) 

The common denominator of eq (13) is &-pl (e - f~dM+ 
e - i P d M  )+1 and equals p;-2pl cos(p?r/ll.l)+l. Placing the 
entire expression Over this common  denominator^ we 
obtain 

autocorrelation coefficient at  lag n is 

-- 
pn=X,X,-,/X 2-XtX1-n --e (8) 

For discrete data, the Fourier transform must be expressed 
as a finite Fourier series. The spectral density a t  lag p is 
then 

(9) 

4 

Lp(l+P:-2P, cos 5)=[p:--apl cos M " I  -+I Pplr M-1 

g = l  
Tv= P0+2 c Pa cos M +  PM cos plr 

+[plpye [ f P r - ( f P ~ l M ) l -  P F P I  M e f ~ ~ + p ~ e f ~ ~ / u ]  

+[plpye- 1tm- ( i P r l W -  pi- pye-i~u+p~e-'Pr/M] where the p's are defined in eq (8). The po is the coefficient 
at  zero lag and is identically equal to 1; pM is the auto- 
correlation coefficient at  the maximum lag M .  The 
maximum number of lags used depends on the record 
length and is generally chosen to be no more than 

+[pfpf cos p - 2 p 1 p y  cos P* - cos pa+py  cos plr]. M 
(14) 

1/10 the number of data points available. 
If the data are the result of a simple Markov process, we 

can express the autocorrelation coefficients as powers of 
Collecting terms and reconverting to cosine form whenever 
possible, we can simplify eq (14) to 

(l-pXl - p y  cos pn)  +2p1py [cos (p*-@-cos g cos p T ]  
Lp= 

Since p is always an integer, sin pr=O, and cos p r =  
(-I),. Making these substitutions and applying the 
formula for C Q S ( U - - ~ ) ,  we obtain 

By definition, p1 is always less than 1, and M is large 
enough so L,  approaches the limiting form 

1-P;d 
p17 1+p:-2p, cos - M 

(17) 
Lv= 

This is the formula for the power spectrum of red noise 
given by Gilman et al. (1963). 

Now consider the variable 2, defined in eq (1). Simple 
substitution gives - 

Z=(1-p1)X=0 
and - +a= (1- p:)& 

Let S, denote the power density function of the X's; r,, 
the autocorrelation coefficient of the 2 ' s  at leg n; and P,, 
their power density function. Then, 



MQY 1971 Rosemary M. Dyer 437 

9-\ 

a '- 
z 6- 

8- 

W 

5- a 

or, in genera& 

A 

-PI(PM-I+PM+I)  COS^^. (26) 

In eq (26), the term inside the summation sign can be 
rearranged by collecting terms in pn, and becomes 

SJ 

8-  

7 -  a 
ZZ 6 -  

2 4 -  

4 3- 
a 2-  

W 

0 
5-  

- c 
W 

I 

0- 

Placing this result into eq (26), we obtain 

B 

I I .  I * I  1 I 

prr (1-Pp:)Pp=s,(1+P:)-22p, cos- +PM cos - c o s p  [ 5  M 

9- 

8 -  

T -  
a g 6 -  

5 -  
W 

I- 

W 

2 4 -  

: 3- 
= 2 -  

I 

0 

The last term in eq (29) approaches zero for large M ,  
giving 

A 

I , I , I , I , ,  

as the limiting case. Blackman and Tukey (1958, pp. 41 
and 126) discuss similar procedures without giving details. 

The modification of the data according to eq (1) 
produces a spectrum that equals the spectrum of the 
original data times the reciprocal of a red noise spectrum 
(eq 17). This verifies the contentiqm that the filtering 

0.0 a2 0.4 0.6 08 1.0 
RELATIVE FREOUEWCY 

0.0 0.2 0.4 0.6 0.8 1.0 
RELATIVE FREQUENCY 

FIQUBE l---(A) the spectrum that results from a Markov process 
with ~ ~ ' 0 . 8  and (B) the white noise spectrum that results when 
the data with spectrum (A) are filtered by eq (1). 
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p 5 -  
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a -I 3- 

= 2 -  

W 

+ 
W 

I -  

o 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

RELATIVE FREQUENCY RE L AT I VE F R EQU E N CY 

FIGURE 2.-(A) the white noise spectrum resulting from a series of 
independent random variables and (B) the spectrum that results 
when independent random variables are filtered by eq (l), setting 
~1'0.8. 

introduced by eq (1) eliminates that portion of the 
spectrum due to a simple Markov process. 

4. EXAMPLES O F  THE FILTER'S EFFECTS 
ON POWER SPECTRA 

Suppose the original data (the X's) were the result of 
a simple Markov process, with a spectrum defined by eq 
(17). If the value of p1 were 0.8, the original power spec- 
trum would look like that in figure 1A. The spectrum of 
the modified data (the 2's) would be simply a white 
noise spectrum (fig. 1B). This example itself is trivial; 
a purely Markovian process would produce Z's identically 
equal to zero. Not quite so trivial is the conclusion that 
the more nearly the spectrum of the modified data ap- 
proaches the spectrum of white noise, the more closely 
the original data resembled the output of a simple Markov 
process. 

Let us now consider original data that were completely 
random, producing a white noise spectrum as in figure 2A. 
In practice, the filtering of eq (1) would never take place 
because the autocorrelation coefficients a t  successive time 
intervals would be discouragingly low. However, if the 
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FIGURE %-(A) the spectrum that results from a purely periodic 
function with resonant frequency one-half the Nyquist frequency 
(In= 1/24 and (B) the magnification d SpeCtTWII (A) after the data 
are modified according to eq (I), with pl=Q.8. A t  other frequencies 
the amplitude may be reduced, rather than increased, by filtering. 
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FIGURE 4.-(A) the spectrum with maximum amplitude rat ffm 
quency= 0.5 fm and (B) the spectrum that results- from modifying 
the dsta d (A) by eq (I). and with p1=0.8. Note that the maxi- 
mum amplitude has shifted to f=O.6 fD .  

REERENCB 

Ackeman, Bernice, “The Nature of the MeteoroBogiicd Fluctuations 
in Clouds,” Journal of Applied Meteorology, Vol. 6, No. 11, Feb. 

Blackman, R. B., and Tukey, 8. W., The Ymuremmt of Power 
Spectra, Dover Publications, Inc., New York, N.Y., 1958, 190 pp. 

Dyer, Rosemary M, “Persistence in Snowfall Intensities Memuredl 
at the Ground,” Journal of Applied Meteorology, Vol. 9, No. 11, 
Feb. 11970, pp. 29-38. 

QiPman, D. IL., Fuglister, F. J., and Mitchell, J. M., Jr., ‘‘On the 
Power Spectrum of ‘Red Noise,’ ” Journal of the Atmosphe& 
Sciaceu, VoL 20, No. 2, Mar. 1963, pp. 182-184. 

MikT, Kenneth S., Engineering Mathematica, Dover PubBiclptions, 
h E . ,  New Uork, N.Y., 1956, 417 pp. (see pp. 174-177). 

Mitchell, J. Murray, YT., “Further Remarks on the Power Speotnum 
of ‘Bed Noise,’” Joztrnal of the Atmosphm’c Sciences, Val. 211, 
NO. 4, J ~ Y  nwrfl, p. a n .  

Southworth, R. W., “Autocornlation andl Spectral Analysk,” 
Mathematical M e t h d  for Digital Computere, John Wiley t Sons, 
Ino., New York, N.Y., n96tBJ pp. 213-220. 

n w ,  pp. 6i-n. 


